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The purpose of this paper is to promote statistical power analysis in the behavioral sciences by introducing

the easy to use GPower software. GPower is a free general power analysis program available in two

essentially equivalent versions, one designed for Macintosh OS/OS X and the other for MS-DOS/Windows

platforms. Psychological research examples are presented to illustrate the various features of the GPower

software. In particular, a priori, post-hoc, and compromise power analyses for t-tests, F-tests, and y>-tests

will be demonstrated. For all examples, the underlying statistical concepts as well as the implementation in

GPower will be described.

In the behavioral sciences, we routinely apply statistical
tests, but control of statistical power cannot be taken for
granted. However, neglecting statistical power—the
probability of rejecting false null hypotheses—can have
severe consequences. For example, without control of
it
results.

statistical is very difficult to
Statistical

nonsignificant results because (a) the null hypothesis (Ho)

power interpret

nonsignificant tests can produce
holds and is retained correctly or (b) the alternative
hypothesis (Hi) holds but the test has not been powerful
enough to detect the deviations from Ho. Obviously, there is

no reasonable way to decide between interpretations (a) and
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(b) when the power of the test is unknown. As a result of
neglecting statistical power analyses, null results are
published only rarely. Thus, the publication of research
findings is biased in favor of Hi hypotheses (Bredenkamp,
1972, 1980).

The omission of power control is frequently justified by
the argument that power analyses are too complex to
perform. The GPower software ! (Erdfelder, Faul, & Buchner,
1996)! presented in this article should largely render this
argument obsolete. GPower is an easy to use program for
performing various types of power analysis. This paper tries
to familiarize readers with the concept of statistical power
analysis in general and with GPower in particular.

Types of power analyses

Different types of power analysis can be distinguished
with respect to their intended purposes. We want to present
the two most common types—a priori and post-hoc power
analysis—as well as a third variant, compromise power

1 from

Note

GPower is free and may be downloaded
http://www.psycho.uni-duesseldorf.de/aap/projects/gpower.
that this tutorial refers to GPower Version 2. By now, Version 3 (Faul,
Erdfelder, Lang, & Buchner, 2007) is already available via the same
weblink. Version 3 comprises an extended functionality which

might be worthwhile for the interested reader.
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analysis. All three types can be accomplished with the
GPower software.

An a priori analysis is done before a study takes place. It
is the ideal type of power analysis because it provides users
with a method to control both the type-1 error probability «
(i.e., the probability of incorrectly rejecting Ho when is in fact
true) and the type-2 error probability S (i.e., the probability
of incorrectly retaining Ho when it is in fact false). By
implication, it also controls the power of the test, that is, the
complement of the type-2 error probability (1 - §) (i.e., the
probability of correctly rejecting Ho when it is in fact false).
An a priori analysis is used to determine the necessary
sample size N of a test given a desired a level, a desired
power level (1 - B), and the size of the effect to be detected
(i.e., a measure of the difference between the Ho and the Hu).

In contrast, a post-hoc analysis is typically performed
after a study has been conducted so that the sample size N is
already a matter of fact. Given N, a, and a specified effect
size, this type of analysis returns the power (1 - f), or the f
error probability of the test. Obviously, post-hoc analyses
are less ideal than a-priori analyses because only « is
controlled, not B Both g and its complement (1 - ) are
assessed but not controlled in post-hoc analyses. Thus, post-
hoc power analyses can be characterized as instruments
providing for a critical evaluation of the (often surprisingly
large) error probability § associated with a false decision in
favor of the Ho.

The third type of power analysis provided by GPower,
compromise power analysis, provides a pragmatic solution
to the frequently encountered problem that the ideal sample
size N calculated by an a-priori power analysis exceeds the
available resources (Erdfelder, 1984). For example, clinical
investigators are sometimes interested in diseases or
disorders of a very low prevalence for which the number of
available participants is small. In spite of these suboptimal
circumstances, a fair decision between Ho and H1 is possible.
For this situation, a reasonable compromise between a
preferably small a and a preferably large power (1 — ) has
to be found. To this end, a decision has to be made of how
important § should be in comparison to a. This weighting is
expressed by the factor g (= / a). Based on N, g, and the
specified effect size, the compromise power analysis then
determines a and f, and the associated critical value of the
relevant test statistic. In other words, compromise power
analyses control the error probability ratio g = f/a. Both «
and f are assessed given a fixed error probability ratio g.
Note that compromise analyses can also be very useful
when the available N is “too large”. For example, in
goodness-of-fit tests, very large sample sizes are not
unusual. Under these conditions, even negligible deviations
of the empirical data structure from the data structure
implied by the model (Ho) may lead to model rejections if
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conventional significance levels like = .05 are used. In such
situations, compromise power analyses provide users with a
method to find more reasonable, strict decision criteria such
that effect sizes of interest are detected with balanced
probabilities & and g consistent with the user-defined error
probability ratio g = f/c.

Examples of statistical power analyses with GPower

We will present examples of statistical power analysis
for the three most often applied statistical tests in
psychological research, that is t-, F-, and p*-tests. We will
describe how to obtain calculations of sample size (in case of
a priori analyses), statistical power (in case of post-hoc
analyses), and o and g values (in case of compromise
analyses) using the GPower program. GPower exists in two
their
implementation. One version is MS-DOS compatible and

versions that are equivalent in numerical
may be run under Windows; the other version has been
designed for Mac OS 7 to 9 and may be run in the classic
mode of Mac OS X. All explanations and figures refer to the
Macintosh version; however, given that the user interface of
the two versions is very similar, no difficulties should
emerge in following the descriptions for users of the MS-

DOS version” .

Power analyses for t-tests

Independent samples t-test

A frequently cited study by Warrington and Weiskrantz
(1970, Experiment 2) compared the memory performance of
amnesic patients with that of control subjects. In addition to
commonly used direct memory tests, such as a recall test,
indirect memory measures, such as a word-stem completion
test, were used. Indirect tests are thought to measure after-
effects of experiences without giving the explicit instruction
to remember. Whereas the amnesic patients performed
worse than controls in the recall test (means of 8 vs. 13),
there was no significant difference between the groups in
the word-stem completion test (means of 14.5 vs. 16).

Do these results prove that amnesics are as good as
controls in indirect test performance, at least with respect to
word-stem completion? Looking at the sample means, we
note a difference between amnesics and controls in the

2 Program users can select between an accuracy mode and a speed
mode (see the «I prefer...» option in Figure 1). Whereas accuracy
mode calculations are based on the actual noncentral distribution of
the relevant test statistic, speed mode calculations approximate this
distribution by other types of distributions. The computational
capability of present-day computers allows using the accuracy

mode without hesitation.
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Figure I: GPower display of a post-hoc power analysis for

a t-test (means) situation. For details see text.

word-stem completion task. Relative to controls, amnesic
patients completed fewer word stems with words they had
seen before. Taking into account that the sample included
only 4 amnesics and 8 controls, the statistical power of the t-
test for independent samples must have been rather small.
Additionally, the unequal sample sizes in the two groups
tend to reduce statistical power. This is evident when we
have a look at the noncentrality parameter d which defines
the noncentral t-distribution under Hi and reflects the
degree to which Ho is false (Johnson & Kotz, 1970, Chap. 31):

S=d- /LN”Z )

with n1 and n2 as the sample sizes of the two groups
(amnesics and controls), N = n1 + nz, and d = (u1 - p201) / o.
The symbol d (commonly called Cohen’s d) is the effect size
index for independent samples t-tests used by Cohen (1988).
p1 and p2 are the population means of the two groups. For
standardization purposes, the difference of population
means is divided by the common standard deviation of the
two populations, o. Ho of the one-tailed t-test assumes p2 - 1
<0, H1 assumes p2 - y1 > 0. For a specified total sample size
and a given d, Equation (1) shows that the more unequal the
group sizes, the smaller d will be, and with it, the smaller
will be the statistical power.3

° Note that the relationship between the difference of the sample
sizes m1 and n2 and power is modulated by the size and the
magnitude of disparity of the standard deviations in the two groups
that enter into the calculation of Cohen’s d. When the two standard
deviations are different in size, power will vary depending on
which group (the larger or the smaller) has the larger standard
deviation and on the magnitude of this disparity (see e.g. Myers &
Well, 1995). For the example chosen here, this complication of affairs
is not of any relevance because we assume equality of standard

deviations for the two groups (see next paragraph).
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Figure 2: GPower display of a compromise power analysis for
a t-test (means) situation. For details see text.

But how large was the statistical power for the reported
results of Warrington and Weiskrantz (1970) in the word-
stem completion task, if we assume that the underlying
population means equalled 14.5 for the amnesic patient
group and 16 for the control group? Let us assume that the
standard deviation of test performance equalled 3 in the
underlying populations of each group (unfortunately,
neither the standard deviation of the samples nor the
empirical t-values have been reported). In GPower we have
to choose «Post-hoc» as type of power analysis and «t-Test
(means)» as type of test (see Figure 1). Because the
hypothesis is directional —we want to know whether
controls are better than amnesics—a «one-tailed» test is
selected. Next, we determine with «Calc “d”"» d = (16 —
14.5)/3 = 0.5 as the size of the effect to be detected. An effect
of this size equals “medium” effects in terms of Cohen’s
(1988) conventions. What was the probability to find this
effect given a level of a = .05? We specify o = .05, n: = 4, and
nz = 8. The result is disillusioning. The statistical power of
this test amounts to only .1887. GPower also returns the
critical t-value associated with the chosen a level, that is,
£(10) = 1.8125, and the noncentrality parameter ¢ = 0.8165
determined by sample size and specified effect size d (see
Equation 1).

Conclusion: There was hardly any chance to detect a
medium sized deficit of amnesics in Warrington and
Weiskrantz” (1970) word-stem completion task. We can use
the «Post-hoc» type of power analysis to determine of what
size the performance difference between groups in the
word-stem completion task necessarily would have been to
find this difference with a statistical power of .95. To this
end, we have to keep the program inputs as specified above
(0, m1, n2), but increase the effect size “d” until the calculated
statistical power reaches .95. This happens with an effect
size of d = 2.1694. This standardized effect size value of
2.1694 can be recalculated into a performance difference in
terms of the word-stem completion task (by transforming d



= (1 - o) / o into (th - 2) = d %0 and by inserting the values
of the example, 2.1694 x 3 = 6.5082). This result implies that a
population mean difference not less than 6.5082 words in
favor of the control group would have been necessary to
achieve a power of .95.

Alternatively, if we want to detect an effect of size d=0.5
with nm1 = 4, 2 = 8, and equally large a and f error
probabilities (7 = 1), the «Compromise» option has to be
chosen as type of power analysis (see Figure 2). Here, we
specify the «Beta/alpha ratio» as “1” if we consider both
types of error as equally serious." Then GPower returns a = £
= .3422 (associated with a critical value of #(10) = 0.4186).
Under the
significance level is the best possible decision. However, this

prevailing circumstances, choosing this
statistical test is hardly any better than tossing a coin to

decide whether to accept or reject Ho.

Paired samples t-test

In succession of Gesell and Thompson’s (1929) work, a
number of experiments with monozygotic pairs of twins
have been conducted giving one randomly chosen twin
training of specific motor skills while the other one did not
obtain any training program. This allowed for a controlled
investigation of whether certain abilities (e.g. learning to
walk, control of the bladder) develop in a process of
whether
promote or impair this development.

maturation or environmental influences can

Imagine that we want to replicate such a twin study
which shall be analyzed with a paired samples t-test. Let us
further assume that there is only a pool of 20 pairs of twins
available. What are reasonable error probabilities we have to
accept for our statistical test?

X and Y denote the age at which the trained and the
untrained twin, respectively, will master a special motor
ability. Ho of the one-tailed paired samples t-test is
characterized by uxy = ux - uy < 0, with uxy denoting the
population mean of the age differences of each twin pair.
The effect size d- is defined as:

P

with oxy being the standard deviation of the (X - Y)
differences, covxy being the covariance, and p being the

;2

(positive) correlation between the X and Y values in the
population given Hi is true. Other things being equal, the
larger the correlation p, the smaller the denominator will be,
and the larger will be the effect size index d.. If Hi is true,

! Alternatively, values of g > 1 could be used if a type-2 error is

considered less serious than a type-1 error.
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the distribution of our test statistic is the noncentral -
distribution with N — 1 degress of freedom (N denotes the
number of twin pairs, i.e. the measurement pairs) and a

noncentrality parameter

§:M-\/ﬁ:dz-\/ﬁ. (3)
Oy

Let us assume that on average the developmental difference
in a specific motor skill amounts to 2 months. For a specific
motor skill, the standard deviation of the age difference may
amount to 4 months. Hence, following Equation (2), the
effect size to be detected with this replication study equals d-
=2/4 =0.5. Because we want to decide upon the size of the a
and f error probabilities given N and d: are fixed, we need
the «Compromise» analysis in GPower. The option «t-Test
(means)» we have used in the previous example is based on
independent samples and calculates the degrees of freedom
as N — 2. This is no longer adequate for the current situation
because the twin data are dependent. For a paired samples ¢-
test there are N — 1 degrees of freedom. Therefore, we have
to choose the option «Other t-Tests» for which the degrees
of freedom can be determined independently of N. The
hypothesis is directional again—we want to know whether
trained twins are beyond their untrained siblings in their
motor skill development—so that we choose the «one-
tailed» option. In «Other t-Tests», the to-be-specified effect
size is labelled f instead of 4.’ The noncentrality parameter

is calculated as follows:
S=f-N. 4)
Comparing Equations (3) and (4) we see that the calculated
d- value (i.e. 0.5) can be inserted for the effect size f to obtain
the correct noncentrality parameter for matched-pairs t-tests
using the «Other t-Tests» option. «N» has to be set to 20 (20
pairs of twins were available). If a and f shall be of same
size, the »Beta/alpha ratio» option again has to be set to “1”.
The test has N — 1 = 19 degrees of freedom («DF for t-Test»).
GPower returns a noncentrality parameter of 6= 2.2361 and
recommends to choose a = f = .1357. For this situation the
power is 1 - § = .8643. In order to reject Ho (i.e., in order to
reject the hypothesis of no differences between the twins,
which implies rejecting the maturation hypothesis) and to
accept the Hi (i.e., to accept the “environmental influences”
hypothesis), the empirical t-value has to exceed the critical
value #(19) = 1.1328. Even though this result is less
devastating than that of the previous example, there is
nevertheless a large error probability associated with each

* The reason for using the symbol f rather than d is that the «Other t-
Tests» option of GPower has been designed to provide power

analyses for any type of t-test, not just t-tests for means.



decision possible. In order to reduce this error probability,
the sample size would have to be increased. To what extend
we would have to increase the sample size can be
incrementally determined with the «Post-hoc» analysis
option. A «Post-hoc» analysis again with the options «Other
t-Tests» and «one-tailed» as well as the specifications o = .05,
f=05, N =45, and df = 44 returns a power value of 1 - =
.9512. A sample of this size is necessary to obtain a power
level above .95.

In the above example, pairs of twins provided the
dependent data. As a matter of course, we would have to
proceed analogously for other kinds of dependent data, for
example, for repeated measurements of the same subjects.

t-test for correlations’

Berry and Broadbent (1984) investigated the relation
between task performance in controlling a computer
simulation and verbalizable knowledge about the simulated
system. Experiment 1 found a negative correlation (in the
range of -.25 and -.30) between both variables. The better the
participants controlled the simulation, the worse they were
able to provide information about the simulated system.

However, this negative correlation was not statistically
significant. The authors attributed the lack of significance to
the small sample size (N = 12). But how large was the
probability to find a correlation of a specified size in this
study?

Have a look at the definition of the noncentrality
parameter & for t-tests for correlations between two
variables:

S=

2
NP )
o)

with p as the population correlation associated with Hi, and
N as the sample size—that is the number of measurement
pairs. According to Cohen (1988) correlations of p = .30 are
defined as medium sized effects. What are the odds to find
an effect of this size in an experiment like the one described
by Berry and Broadbent (1984)? We have to choose «Post-

® We would like to thank Dave Kenny for making us aware of the
fact that the f-test (correlations) power analyses of GPower are
correct only in the point-biserial case (i.e., correlations between a
binary variable and continuous variable, the latter being normally
distributed for each value of the binary variable). For correlations
between two continuous variables following a bivariate normal
distribution, the t-test (correlations) procedure slightly
overestimates power. The procedures for correlations available in
GPower 3 provide an exact solution to this problem (Faul et al.,

2007).
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Figure 3: GPower display of an a priori power analysis for a ¢-test
(correlations) situation. For details see text.

hoc» as type of power analysis and «t-Test (correlations)» as
type of test. The test is «one-tailed» because we want to test
Ho: p> 0 versus Hi: p<0. Enter r = .30 as effect size measure,
N = 12 as sample size, and o = .05. The noncentrality
parameter turns out to be 6= 1.0894, a t-value of #(10) = -
1.8125 or below denotes a significant result. However,
statistical power is only 1 - f = .2648. Berry and Broadbent’s
(1984) explanation for not finding a significant correlation
seems to be very plausible: their study lacked statistical
power. But how large should the sample be in order to find
medium effects with a power of .95? Change the settings to
«A priori» type of analysis, enter .05 as a, .95 as power, and
.30 as effect size r (see Figure 3). The required sample size
amounts to N = 111. The critical f-value equals #(109) = -
1.6590, the noncentrality parameter is 6= 3.3133.

Power analyses for F-tests

We will restrict our descriptions to power analyses for
analyses of variance for fixed effects. These analyses can be
conducted with the «F-Test (ANOVA)» option. We will
describe neither the «F-Test (MCR)» option (for F-tests in
multiple regression/correlation analyses) nor the «Other F-
Tests» option (for approximate F-tests for fixed factors in
mixed models and approximate multivariate analysis of
variance (MANOVA) F-tests).

The effect size index of relevance is the index f or f2. The
relation between f2 and the noncentrality parameter A of the
noncentral F-distribution is given by:

A=f>n-k=f>N, (6)
with n denoting the number of subjects in each of the k

groups. The effect size index f is defined as:

2
n

- , 7

- @)

with #? as the amount of the total population variance
explained by the group differences specified in Hi. In case of
unequal group sample sizes nj, the effect size index f is
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Figure 4: GPower effect size computation of fbased on
the empirical data. For details see text.

calculated as follows:

k _\2
Z}.Zlﬂj (Hj—H)

f= N : ®)

o
In Equation (8), nj denotes the number of subjects, y the

k
population mean of group j, ﬁ:(Z, 1n]--,u]-)/N the
]:

weighted mean of the k population means, N the total
sample size, and ¢ the population standard deviation in
each group.

One-factorial designs

Consider a study on anger expression by Schmitt, Hoser,
and Schwenkmezger (1991). The authors investigated
whether the anger expressed in response to damage caused
by another person depends on the perpetrators’s degree of
responsibility for this damage. The degree of responsibility
was manipulated in six conditions. Let us assume that we
want to replicate the study by Schmitt et al. (1991). Ho
implies that the six groups do not differ in the degree of
anger expressed. We will base the population effect size
estimation for our fictitious example on the empirical effect
that was found in the study at hand. GPower allows to
calculate this effect by first choosing «F-Test (ANOVA)» as
type of test (irrespective of all other settings) and then by
clicking on the «Calc “f”» button. A new window appears
(see Figure 4). Change the «Number of groups» to 6. By
inserting the group sample sizes (20), the group means of
the measured degrees of expressed anger (that is 15.3, 18.3,
20.5, 22.7, 23.3, and 24.8, cf. Schmitt et al., 1991, p. 641), and
their average standard deviation «Sigma» (= 6.5; M. Schmitt,
personal communication, April 1995), we obtain f = 0.4963.
How many subjects would be necessary in the replication
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study if we were willing to accept o = f = .05? In GPower,
choose «A priori» as type of analysis and «F-Test
(ANOVA)» as type of test with the option «Global» . Set o=
.05,1-p=.95 f=0.4963, and number of groups to 6. The
noncentrality parameter A equals 22.1682, the critical F-value
is F(5, 84)=2.3231. We will need N = 90 participants—that is
15 in each group—for this replication.

Multi-factorial designs

Koele (1982) exemplifies statistical power analyses for
complex designs. Assume an A x B design with fixed-effects
variables. Factor A comprises ka = 3, factor B comprises ks =
4 levels. What is the statistical power for the tests of the two
main effects as well as for that of the interaction? The
procedure is similar to the one-factorial case described in the
paragraph above. However, the number of denominator
degrees of freedom is reduced by the additional variables
(i.e, N - ka x ks). To follow Koele’s (1982) examples, we
choose «Post hoc» as type of analysis in GPower, «F-Test
(ANOVA)» as type of test including the option «Special»,
and a = .05. Koele (1982) defines f2 = 0.05; accordingly we
specify f = +0.05= 0.2236 in GPower. Following Koele’s
example, there are 10 observations in each of the 12 cells of
the experimental design. Thus, the total sample size N has to
be set to 120. The number of cells (12) has to be inserted into
the «Groups» option. To calculate the statistical power for
factor A, we need to know the numerator degrees of
freedom for this factor, that is, ka - 1 = 2. Insert this
information into «Numerator df». GPower returns A = 5.9996,
a critical F-value of F(2, 108) = 3.0804, and a statistical power
of 1 - = .5714. Correspondingly, power can be calculated
for factor B by changing the numerator degrees of freedom
to ks - 1 = 3. For this case, power is not more than .5020, the
critical F value equals F(3, 108) = 2.6887. Even worse,
statistical power drops to .3806 with a critical value of F(6,
108) = 2.1837 when we are interested in the interaction of
factors A and B with (ka — 1)( ks — 1) = 6 numerator degrees
of freedom.

The small disparities between the GPower results and the
values reported by Koele (1982) are due to computational
Whereas
approximations, exact routines are used in GPower to

differences. Koele’s results are based on
calculate the relevant distributions (for details, see Erdfelder
et al, 1996). Note that there may be larger differences

between GPower results and the results obtained by

" Global tests refer to the global null hypothesis, that is, the
assumption of no mean differences at all among the groups of the
design. Special tests refer to tests of null hypotheses of subsets of

linear contrasts, for example main effects, interactions, and trends.



Table 1. Cell probabilities in the 2 x 2 contingency table under
the Hi with type of therapy and therapy success as row and
column variables, respectively.

Therapy success

Success Failure >
X .88x 5= .440 A2 x.5= 060 500
Type of
therapy
Y .79x 5= .395 21 x.5= 105 500
3 835 165 1.000

following Cohen’s (1988) suggestions to calculate statistical
power for complex designs. Evidence has been provided
that Cohen’s power assessment procedure for interaction
tests is flawed (Bradley, Russell, & Reeve, 1996; Erdfelder et
al., 1996; Koele, 1982, footnote 1).

Power analyses for y’-tests

Two types of j?-tests are commonly applied in
psychological research (cf. Cohen, 1988): (a) contingency
tests (also called independence tests) assessing deviations
(H1) from stochastic independence (Ho) of two or more
categorical variables and (b) goodness-of-fit tests of a
theoretical distribution to frequency data. Statistical power
computations are based on the noncentral y2-distribution for
(Johnson & Kotz, 1970, Chap. 28). Its
noncentrality parameter

A=w? N )
is the product of the sample size N and the squared effect

o Zm:(pli_pOi)z .
- Poi

In Equation (10), m denotes the number of categories, poi the

both cases

size index

(10)

probability of category i under Ho, and pii the probability of
category i under Hi.

Let us have a look at a contingency test of the following
type: The success rate of therapy X is quite large with px =
.88. Unfortunately, therapy X is also very expensive.
Assume that a new therapy Y would be much cheaper. Of
course, this new therapy should only be applied if its
success rate is not (significantly) smaller than that of therapy
X. This situation corresponds to a test of Ho: py > px against
Hi: py < px which can be tested with a one-tailed -
contingency test for 2 x 2 contingency tables. Type of
therapy (X vs. Y) functions as the row variable and therapy
success (success vs. failure) as the column variable. Half of
the sample is assigned to therapy X and Y, respectively. We
want to detect a disadvantage of therapy Y given there is
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Effect size *“w”:

Parameters defining H1

Number of cells: 4 3
Proportion of
cases in cell posited by HA  posited by H1
1 8.4175 [8.4408 ]
1 8.4173 8.440808
2 8.8825 0.0680
3 B8.4173 B.59308
4 8.8825 B.1830 ||
¥ (must be 1): 1.0088 1.8088
MNote : Click on the parameter ywou
w!sh Eo egit, enter a \:ralue, aﬂd
Effect size “w”: B.1212 click ™" or uze the “Enter ™ key

("= " on the nureric keypad) ta
inzett the new valoe.

Calculate I Calc & Copy

Figure 5: GPower effect size computation of w based on the

therapy success rates under Hy and H,. For details see text.

one with a high degree of certainty. In other words, if the
statistical test does not reveal a difference between the two
therapies, we want to be very sure that there really is no
difference. Therefore, statistical power is set to 1 - f#=.95. By
contrast, we accept a risk of a = .20 to incorrectly rejecting
therapy Y as less efficient than X. By definition, we will call
therapy Y less efficient than X only if its success rate
undershoots the success rate of X by at least .09. With a
success rate for therapy X of px = .88, this implies a success
rate for therapy Y of py = .88 - .09 = .79. The Hi cell
probabilities of the 2 x 2 contingency table implied by these
specifications are displayed in Table 1.

What sample size N is needed for this test situation? To
answer this question we choose «A priori» as type of
analysis and «Chi-square Test» as type of test. GPower
calculations are based on a nondirectional y2-test situation.
For the directional test problem we face, a is set to .40
instead of .20. Power is set to .95. The effect size measure ®
which corresponds to the alternative hypothesis specified by
px = .88 and py = .79 can be calculated in GPower with the
«Calc “w”» option button. A submenu appears (see Figure
5). Because 50% of the sample is treated under X and Y, the
cell probabilities of the contingency table under Hi yield
880 x .5 = 440 and .120 x .5 = .060, respectively, as the
success and failure rates with therapy X (see Table 1).
Analogously, we obtain .790 x .5 = .395 and .210 x .5 = .105,
respectively, as the success and failure rates with therapy Y.
Ho predicts statistical independence of therapy and outcome
given the same marginal means. This implies identical
success probabilities (.835 x .5 = .4175) and failure
probabilities (.165 x .5 = .0825) for both therapies. After

", g

inserting the Ho and Hi probabilities in the «Calc “o”»



submenu the effect size w is calculated as given in Equation
(10). We thus obtain @ = 0.1212. Finally, df = 1 has to be
specified in the main window. The noncentrality parameter
equals 4 = 6.1696. The a priori analysis returns a necessary N
of 420 and a critical y2-value of y%1) = 0.7083. If the y*-statistic
exceeded this critical value and the sample success rate of
therapy Y were smaller than that of therapy X, we would
accept Hi. The new therapy Y would have to be rejected. If
the y2-statistic did not exceed this critical value, Ho would be
maintained. The less expensive therapy Y could be used.
Note that all computations are approximations because the
exact distribution of the j?-statistic is only a g?-distribution
for the asymptotic case, that is, for N — «. However, with N
= 420, the deviation from the asymptotic distribution is
negligibly small’ .

Conclusion

Statistical power considerations are indispensable for the
evaluation of statistical decisions as well as for designing
studies. With GPower we introduced an easy to use software
tool that facilitates the implementation of various kinds of
power analyses.

This paper was restricted to power analyses of the most
frequently used statistical tests. We recommend the work of
O’Brian and Muller (1993) as well as of Chartier and Allaire
(in press, this issue) to those interested in power analyses
for repeated measures designs and for multivariate analysis
of variance (MANOVA) F-tests. Power analyses for these
situations can be accomplished in GPower using the «Other
F-Tests» option, but care has to be taken to correctly specify
the noncentrality parameter. Readers seeking information
about power analyses for random-effect ANOVAs are
referred to Koele (1982).
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